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What we’ll learn in this lecture

I Model-based regression and classification

I Logistic regression as a probabilistic classifier



Model-based regression and classification

I NB instance of model-based probabilistic classification

I In more general form, expressible as:

P(c |~x) = f (~x , ~β) (1)

where:

f () is some function
~x vector of feature scores, {x1, . . . , xn}
~β vector of feature weights, {β0, β1, . . . , βn}
β0 is for intercept

I More specifically:

P(c |~x) = f ({β0, β1x1, . . . , βnxn}) (2)

I Idea is then to learn “best” ~β



Linear model

P(c |~x)) = f (~x , ~β) = β0 + β1x1 + . . .+ βnxn (3)

I Might try simple linear model

I Fitted with ordinary least squares (≈ straight line [hyperplane]
of best fit)



Linear model

P(c|~x) = β0 + β1x1 + β2x2 + . . .+ βnxn (4)
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I But probabilities bound between 0 and 1
I Meaning of probabilities outside range unclear
I Artificial to bound ~β to this range



Sigmoid model
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I What we want is response variable (y , P(c |~x)) bounded
between [0, 1]

I But predictor variable, xi , unbounded (at least by model)

I General shape of such a function is a sigmoid or “S-shaped
curve”



Log-linear models

P(c|~x) = β0 · βx11 · . . . · β
xn
n (5)

logP(c |~x) = log β0 + x1 log β1 + . . .+ xn log βn (6)

I Natural (see NB) to express total probability

I as (weighted) product of individual probabilities

I exponentiated by frequency of events

I Taking log of this gives log-linear model

I Directly fit log βi , so can write as:

logP(c |~x) = β0 + β1x1 + . . .+ βnxn (7)



log(P) = βx

log(P) = βx

P = eβx
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I But curve has unbalanced shape:
I Fine granularity of response as P → 0
I Coarse response as P → 1



Balanced in P

I Want behaviour that is same for high P and low P

I This is provided by log odds or logit:

logit(P) = log
P

1− P
(8)

logit(1− P) = − logit(P) (9)



Logistic regression

Putting this together, we get:

logitP(c |~x) = log
P(c|~x)

1− P(c|~x)
= β0 + β1x1 + . . .+ βnxn(10)

P(c |~x) =
1

1 + e−(β0+β1x1+...+βnxn)
(11)

I Expression on rhs of (11) known as logistic function

I So this is called logistic regression



Logistic function

y =
1

1 + e−(β0+βx)
(12)
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I And, happily, the logistic function sigmoid
I (Indeed, is archetypal sigmoid function)



Fitting the model

Doc Terms (Xd) Class (y)
1 X11 X12 · · · X1t · · · X1n 1
2 X21 X22 · · · X2t · · · X2n 0
...

...
d Xd1 Xd2 · · · Xdt · · · Xdn 0
...

...
m Xm1 Xm2 · · · Xmt · · · Xmn 1

I Training data feature vectors X with labels ~y
I Labels for binary classification: member, or non-member
I Have to determine vector ~β such that:

P(yd |matXd) =

(
1 + exp(−(β0 +

∑
i

βixi ))

)−1

(13)

“best fits” data
I Free to use any values for Xdt

I Length-normalized TF*IDF one choice



Data and model
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I The data being fitted are binary

I The fitting value is a probability, P(yd = c |Xd)

I We’re fitting a curve of Bernoulli (one-event binomial) vars

I . . . that best fits the observed data



Maximum likelihood estimation

For weights ~β, the likelihood of the data X and labels ~y given that
model is:

L(~β) =
∏

l :yl=1

P(Xl)
∏

l :yl=0

[1− P(Xl)] (14)

For logistic model:

P(Xl) =
1

1 + e−(β0+
∑

i βiXli )
(15)

I We have to find ~β that maximizes (14)

I This is done by a computer using iterative methods



Logistic regression in practice

Collection

Classifier hotmail trec-2005 trec-2006

NB 0.2479 0.8196 0.8017
NB-IR 0.5561 0.9207 0.9521
Log. Reg 0.4877 0.9461 0.9384
SVM 0.4830 0.9477 0.9754

Table : Normalized AUC on spam filtering; from Kotz and Yih, “Raising
the Baseline for High-Precision Text Classifiers”, KDD 2007. NB-IR is
NB with IR features (length-normalized TF*IDF)

I Logistic regression for text classification generally “almost,
but not quite” as good as SVM

I (Note, on this task, NB with LN-TF*IDF does well
I . . . and see paper for variants that do even better)
I On our GCAT 1000/1000 data, with length-normalized

TF*IDF features, LR got accuracy 93%, F1 88%



Interpreting logistic regression: weights

I βi for term i gives importance of that term in model
I (but interpretation subject to term dependencies)

I For topic GCAT (Govt/Social), highest-weight terms were:

Positive Negative

Term Weight Term Weight

sunday 0.869 shar -0.951
socc 0.643 newsroom -0.926
minist 0.635 trad -0.669
eu 0.629 stock -0.593
saturday 0.599 compan -0.580



Interpreting logistic regression: probabilites

I Logistic regression directly gives reasonable probabilities

I (given constraint of model)

I For GCAT 1000/1000

P(c)

≥ < % positive

0.00 0.05 2.4%
0.05 0.10 14.8%
0.10 0.30 26.9%
0.30 0.50 48.9%
0.50 0.70 74.2%
0.70 0.90 89.7%
0.90 0.95 93.8%
0.95 1.00 99.2%



Looking back and forward

Back

I Model as P(c |~x) = f (β1x1, · · · , βnxn)
where

I xi is feature score (differs for each
document)

I βi is feature weight (common across
topics)

I Learn weights that best “fit” training
data

I Free to use whatever values for x1
(e.g. normalized TF*IDF)

I But probabilities bound between [0, 1]



Looking back and forward

Back

I Sigmoid function maps unbounded
feature scores to bounded probabilities

I Log odds gives even treatment to
high, low probabilities

I Logistic model ties these together

I Learn weights ~β using maximum
likelihood

I Effectiveness “almost, but not quite”
as good as SVM

I But gives us feature weights,
reasonable probabilities



Looking back and forward

Forward

I Next lecture: advanced topics in
classification

I e.g. active learning

I Later: topic modelling



Further reading

I Klienbaum and Klein, “Logistic Regression”, 3rd edn (2010)
(detailed, gradual introduction to logistic regression)

I Hastie, Tibshirani, and Friedman, “The ELements of Statistical
Learning” (2001) (briefer, more technical description)
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