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What we'll learn in this lecture

» Model-based regression and classification

» Logistic regression as a probabilistic classifier



Model-based regression and classification

» NB instance of model-based probabilistic classification
> In more general form, expressible as:

P(clX) = f(X,5)

where:

f() is some function
X vector of feature scores, {x1,..., Xy}

/3 vector of feature weights, {Bo, B1s---,0n}
Bo is for intercept

» More specifically:

P(C|)?) = f({/B07 Bixi, ... 76nxn})

» ldea is then to learn “best” E



Linear model

P(c|%)) = f(%,6) = Bo+ Brxa + - . + Boxn (3)

» Might try simple linear model

» Fitted with ordinary least squares (& straight line [hyperplane]
of best fit)



Linear model

P(C|)?) = Bo + Bix1 + Boxo + ... + Bnxn
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» But probabilities bound between 0 and 1
» Meaning of probabilities outside range unclear
» Artificial to bound f to this range



Sigmoid model
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» What we want is response variable (y, P(c|X)) bounded
between [0, 1]

» But predictor variable, x;, unbounded (at least by model)

» General shape of such a function is a sigmoid or “S-shaped
curve



Log-linear models

P(clX) = Bo- Byt By
log P(c|X) = logpfo+ x1logfi+ ...+ xnlogSn

v

Natural (see NB) to express total probability

v

as (weighted) product of individual probabilities

» exponentiated by frequency of events

v

Taking log of this gives log-linear model

v

Directly fit log 3;, so can write as:

log P(C’)?) = Bo+ fix1 + ...+ Bnxn

(5)
(6)



log(P) = x
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» But curve has unbalanced shape:

» Fine granularity of response as P — 0
» Coarse response as P — 1




Balanced in P

» Want behaviour that is same for high P and low P
» This is provided by log odds or logit:

logit(P) = log TP

logit(1 — P) = —logit(P)



Logistic regression

Putting this together, we get:

logit P(c|X) = log 1_13(;@))?) = fo+ Bix1+ ...+ Bnxa(10)
P(cl%) = ! (11)

1 + e—(Bot+Buxat...+Bnxn)

» Expression on rhs of (11) known as logistic function

> So this is called logistic regression



Logistic function
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» And, happily, the logistic function sigmoid
> (Indeed, is archetypal sigmoid function)



Fitting the model
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Doc Terms (Xq4) Class (y)
1| X X2 oo+ Xie -0 Xig 1
2| Xor Xooo oo-o Xop - Xop 0
d| Xa1 Xg2 - Xge o Xan 0
m Xml Xm2 tt th te an 1

Training data feature vectors X with labels y

Labels for binary classification: member, or non-member

Have to determine vector 5 such that:

P(yq|matXy) = (1 + exp(—(Bo + Z /Bixi))>

“best fits" data
Free to use any values for X,
» Length-normalized TF*IDF one choice

(13)



Data and model
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» The data being fitted are binary

» The fitting value is a probability, P(yq = ¢|X4)

» We're fitting a curve of Bernoulli (one-event binomial) vars
> ...that best fits the observed data



Maximum likelihood estimation

For weights E the likelihood of the data X and labels y given that
model is:

L(B)= T Pxn) T It = P(X))] (14)

Ly=1 l:y;=0

For logistic model:

1
P(X)) = 1 + e~ (Bot+2Z; BiXii)

» We have to find § that maximizes (14)

> This is done by a computer using iterative methods



Logistic regression in practice

Collection
Classifier hotmail trec-2005 trec-2006
NB 0.2479 0.8196 0.8017

NB-IR 05561  0.9207  0.9521
Log. Reg 0.4877  0.9461  0.9384
SVM 04830  0.9477  0.9754

Table : Normalized AUC on spam filtering; from Kotz and Yih, “Raising
the Baseline for High-Precision Text Classifiers”, KDD 2007. NB-IR is
NB with IR features (length-normalized TF*IDF)

» Logistic regression for text classification generally “almost,
but not quite” as good as SVM

» (Note, on this task, NB with LN-TF*IDF does well

» ...and see paper for variants that do even better)

» On our GCAT 1000/1000 data, with length-normalized
TF*IDF features, LR got accuracy 93%, F1 88%



Interpreting logistic regression: weights

> [3; for term i gives importance of that term in model
» (but interpretation subject to term dependencies)

» For topic GCAT (Govt/Social), highest-weight terms were:

Positive Negative
Term Weight Term Weight
sunday 0.869 shar -0.951
socc 0.643 newsroom  -0.926
minist 0.635 trad -0.669
eu 0.629 stock -0.593

saturday 0.599 compan -0.580




Interpreting logistic regression: probabilites

» Logistic regression directly gives reasonable probabilities
» (given constraint of model)
» For GCAT 1000/1000

P(c)
> < % positive
0.00 0.05 2.4%
0.05 0.10 14.8%
0.10 0.30 26.9%
0.30 0.50 48.9%
0.50 0.70 74.2%
0.70 0.90 89.7%
0.90 0.95 93.8%

0.95 1.00 99.2%




Looking back and forward

Back
» Model as P(c|X) = f(Bix1, -, BnXn)
where
> x; is feature score (differs for each
document)
> [, is feature weight (common across
topics)

> Learn weights that best “fit” training
data

» Free to use whatever values for x
(e.g. normalized TF*IDF)

» But probabilities bound between [0, 1]




Looking back and forward

Back
» Sigmoid function maps unbounded
feature scores to bounded probabilities
» Log odds gives even treatment to
high, low probabilities
> Logistic model ties these together

> Learn weights 5 using maximum
likelihood

.. . » Effectiveness “almost, but not quite”
T —— as good as SVM

» But gives us feature weights,
reasonable probabilities



Looking back and forward

Forward

> Next lecture: advanced topics in
classification
> e.g. active learning

> Later: topic modelling



Further reading

> Klienbaum and Klein, “Logistic Regression”, 3rd edn (2010)
(detailed, gradual introduction to logistic regression)

» Hastie, Tibshirani, and Friedman, “The ELements of Statistical
Learning” (2001) (briefer, more technical description)
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